Acta Crystallographica Section E
Structure Reports Online
ISSN 1600-5368

Malin Sandström ${ }^{\text {a }}$ and Dan Boström ${ }^{\text {b }}$

${ }^{\text {a }}$ Energy Technology and Thermal Process Chemistry, Umeå University, SE-901 87 Umeå, Sweden, and ${ }^{\mathbf{b}}$ Department of Chemistry, Inorganic Chemistry, Umeå University, SE-901 87 Umeå, Sweden

Correspondence e-mail: malin.sandstrom@chem.umu.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.001 \AA$
R factor $=0.024$
$w R$ factor $=0.056$
Data-to-parameter ratio $=22.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Calcium potassium cyclo-triphosphate

Crystals of calcium potassium cyclo-triphosphate, $\mathrm{CaKP}_{3} \mathrm{O}_{9}$, have been synthesized from a melt and structurally characterized using single-crystal X-ray diffraction. The compound is isostructural with the mineral benitoite $\left(\mathrm{BaTiSi}_{3} \mathrm{O}_{9}\right)$.

Comment

In the course of extended studies recently undertaken concerning thermodynamic and structural characterization of ternary phases in the system $\mathrm{CaO}-\mathrm{K}_{2} \mathrm{O}-\mathrm{P}_{2} \mathrm{O}_{5}$ (Sandström et al., 2003), we report here the crystal structure of a hexagonal high-temperature modification of calcium potassium cyclotriphosphate. A rhombohedral modification (Andrieu et al., 1966) and an orthorhombic modification (Masse et al., 1975) have also been found for $\mathrm{CaKP}_{3} \mathrm{O}_{9}$. The present structure is isostructural with benitoite, $\mathrm{BaTiSi}_{3} \mathrm{O}_{9}$ (Zachariasen, 1930; Fischer, 1969). In this family, one also finds some germanates, fluoroberyllates, phosphates and other silicates. Andrieu et al. (1966) and Masse et al. (1967) suggested, from comparison of X-ray powder diffraction patterns, that cyclo-triphosphates with the general formula $M^{\mathrm{II}} M^{\mathrm{I}} \mathrm{P}_{3} \mathrm{O}_{9}\left(M^{\mathrm{II}}=\mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Mn}\right.$, Mg and $\mathrm{Zn} ; M^{\mathrm{I}}=\mathrm{K}$ or NH_{4}) should be isotypic with benitoite. Previously, Andrieu et al. (1966) reported the cell parameters for $\mathrm{CaKP}_{3} \mathrm{O}_{9}$ as $a=6.795$ (1) \AA and $c=10.336$ (1) \AA, which are close to those reported here. Pouchot et al. (1966) also suggested that $\mathrm{CdAgP}_{3} \mathrm{O}_{9}, \mathrm{CdRbP}_{3} \mathrm{O}_{9}$ and $\mathrm{CdTlP}_{3} \mathrm{O}_{9}$ are isotypic with benitoite. Prisset (1982) presented a refined crystal structure of $\mathrm{CaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9}$.

Figure 1
Packing scheme of the $\mathrm{CaKP}_{3} \mathrm{O}_{9}$ structure, viewed along the b axis. The tetrahedra represent the phosphate groups, while the blue and pink octahedra represent the coordination spheres around calcium and potassium, respectively. The unit cell is outlined.

Fig. 1 depicts a projection of the structure along the b axis, showing the layer character of the structure. The structure consists of planar tricyclic phosphate rings $\left(\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}\right)$ perpendicular to the c-axis. $\mathrm{A} \overline{6}$ axis runs through these groups. The calcium and potassium ions are situated between the phosphate layers and are each coordinated by six terminal phosphate O atoms (O2). The calcium ion has a slightly distorted octahedron and the potassium ion has a flattened trigonal octahedron as coordination figure. All atoms except O 2 are situated at special sites. The Ca^{2+} ion (point symmetry 32) has $\mathrm{Ca}-\mathrm{O}$ distances of 2.3309 (12) \AA and the K^{+}ion (point symmetry 32) has $\mathrm{K}-\mathrm{O}$ distances of 2.7955 (14) \AA. Atoms P and O1 are both situated at the same crystallographic site (6 k), having point symmetry m. The bridging $\mathrm{P}-\mathrm{O} 1$ distances are 1.592 (2) and 1.595 (2) \AA, and the terminal $\mathrm{P}-\mathrm{O} 2$ distances are $1.4785(12) \AA$. The bridging angle $\mathrm{P}-\mathrm{O} 1-\mathrm{P}$ is $136.40(14)^{\circ}$.

Experimental

Polycrystalline $\mathrm{CaKP}_{3} \mathrm{O}_{9}$ was prepared by mixing KPO_{3} (obtained from dehydrated KHPO_{4}, Merck, p.a., at 873 K) and $\mathrm{Ca}\left(\mathrm{PO}_{3}\right)_{2}$ (obtained from dehydrated $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$, Sigma 98%, at 873 K) at 1073 K in a $1: 1$ ratio. Crystals were grown by heating a mixture consisting of $91 \mathrm{wt} \% \mathrm{CaKP}_{3} \mathrm{O}_{9}$ and $9 \mathrm{wt} \% \mathrm{KPO}_{3}$ in a platinum crucible at 1173 K for about 12 h , followed by cooling at a rate of $6 \mathrm{~K} \mathrm{~h}^{-1}$ to 997 K , and finally quenching to room temperature. According to the binary phase diagram $\mathrm{Ca}\left(\mathrm{PO}_{3}\right)_{2}-\mathrm{KPO}_{3}$ by Andrieu \& Diament (1964), a melt with this composition will encounter the liquidus curve of $\mathrm{CaKP}_{3} \mathrm{O}_{9}$ at approximately 1084 K and allow for precipitation of the title compound during the chosen temperature interval. The solidified liquid was crushed and the colourless crystals which had grown were picked out.

Crystal data

$\mathrm{CaK}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)$
$M_{r}=316.10$
Hexagonal, $P \overline{6} c 2$
$a=6.8090$ (3) \AA
$c=10.3760(9) \AA$
$V=416.61(4) \AA^{3}$
$Z=2$
$D_{x}=2.520 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.794, T_{\text {max }}=0.914$
25323 measured reflections
639 independent reflections

Refinement

$$
\begin{aligned}
& \text { Refinement on } F^{2} \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024 \\
& w R\left(F^{2}\right)=0.056 \\
& S=1.18 \\
& 639 \text { reflections } \\
& 28 \text { parameters } \\
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.019 P)^{2}\right. \\
\quad+0.3146 P] \\
\quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3
\end{array}
\end{aligned}
$$

Figure 2
Extended view of the asymmetric unit of $\mathrm{CaKP}_{3} \mathrm{O}_{9}$, showing the cationoxygen coordination. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Ca}-\mathrm{O} 2$	2.3309 (13)	$\mathrm{P}-\mathrm{Ol}^{\text {ii }}$	1.5950 (18)
$\mathrm{K}-\mathrm{O} 2^{\text {i }}$	2.7955 (14)	$\mathrm{P}-\mathrm{O} 2$	1.4785 (12)
$\mathrm{P}-\mathrm{O} 1$	1.592 (2)		
$\mathrm{O} 22^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 2^{\text {iv }}$	179.66 (8)	$\mathrm{O} 2^{\mathrm{v}}-\mathrm{K}-\mathrm{O}^{\text {i }}$	167.27 (6)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 2$	88.99 (7)	$\mathrm{O} 1-\mathrm{P}-\mathrm{O} 1^{\text {ii }}$	103.60 (13)
$\mathrm{O} 22^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 2$	90.77 (5)	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1$	109.31 (7)
$\mathrm{O} 2-\mathrm{Ca}-\mathrm{O}^{2}$	89.47 (8)	$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1^{\text {ii }}$	107.89 (7)
$\mathrm{O} 2^{\text {iv }}-\mathrm{K}-\mathrm{O} 2^{\mathrm{v}}$	71.52 (5)	$\mathrm{O} 2-\mathrm{P}-\mathrm{O}^{\text {vii }}$	117.87 (13)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{K}-\mathrm{O}_{2}{ }^{\text {vi }}$	91.04 (7)	$\mathrm{P}-\mathrm{O} 1-\mathrm{P}^{\text {viii }}$	136.40 (13)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{K}-\mathrm{O}^{\text {vi }}$	99.31 (3)		

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x+y, 2-x, z$; (iii) $-x+y, y, 2-z$; (iv) $-x+y, 1-x, z ;(\mathrm{v}) x, 1+x-y, 2-z ;$ (vi) $-x+y, y-1,2-z$; (vii) $x, y, \frac{3}{2}-z$; (viii) $2-y, 1+x-y, z$.

Attempts to solve the structure in any corresponding centrosymmetric space group failed. The refined Flack (1983) parameter is indicative of a correct absolute configuration of the structure. The highest electron-density peak is located $0.36 \AA$ from O1, while the deepest hole is $0.57 \AA$ from P.

Data collection: COLLECT (Nonius, 1999); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and local procedures.

This work was supported by the Swedish Energy Agency.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Andrieu, R., Diament, R., Durif, A., Pouchot, M. T. \& Tranqui, D. (1966). Soc. Etud. Chim. Ind. Agric. Argenteuil Fr. C. R. Ser. A, B, pp. 718-721.

Andrieu, R. \& Diament, R. (1964). C. R. Acad. Sci. 259, 4708-4711.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Dowty, E. (2000). ATOMS for Windows and Macintosh. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Fischer, K. (1969). Z. Kristallogr. 129, 222-243.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Masse, R., Durif, R. \& Guitel, J. C. (1975). Z. Kristallogr. 141, 113-125.
Masse, R., Grenier, J. C., Averbouch-Pouchot, M. T., Tranqui, D. \& Durif, A. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 90, 158-161.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Pouchot, M. T., Tordjman, I. \& Durif, A. (1966). Bull. Soc. Fr. Mineral. Cristallogr. 89, 405-406.
Prisset, J. L. (1982). Dissertation, University of Grenoble, France.
Sandström, M., Fischer, A. \& Boström, D. (2003). Acta Cryst. E59, i139-141. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zachariasen, W. H. (1930). Z. Kristallogr. 74, 139-146.

